Na+/H+ exchange modulates Ca2+ mobilization in human platelets stimulated by ADP and the thromboxane mimetic U 46619.
نویسندگان
چکیده
According to recent observations ADP stimulates platelets via activation of Na+/H+ exchange which increases cytosolic pH (pHi). This event initiates formation of thromboxane A2 (via phospholipase A2) and, thereafter, inositol 1,4,5-trisphosphate (via phospholipase C) which is known to mobilize Ca2+ from intracellular storage sites. We investigated changes in pHi and cytosolic free Ca2+, [Ca2+]i, activating platelets with ADP and the thromboxane mimetic U 46619. We found that ADP (5 microM) increased pHi from 7.15 +/- 0.08 to 7.35 +/- 0.04 (n = 8) in 2'-7'-bis-(carboxyethyl)-5,6-carboxyfluorescein-loaded platelets, whereas thromboxane A2 formation was inhibited by indomethacin. ADP also induced a dose-dependent Ca2+ mobilization in fura2-loaded platelets which again was not affected by indomethacin. [Ca2+]i increased by 54 +/- 10 nM (n = 8) at 1 microM and by 170 +/- 40 nM (n = 7) at 10 microM ADP above the resting value of 76 +/- 12 nM (n = 47). Inhibition of Na+/H+ exchange by ethylisopropylamiloride (EIPA) reduced ADP-induced Ca2+ mobilization by more than 65% in indomethacin-treated platelets. This inhibition could be completely overcome by artificially raising pHi using either NH4Cl or the Na+/H+ ionophore monensin. We found that U 46619 increased pHi by 0.18 +/- 0.05 at 0.1 microM and by 0.29 +/- 0.07 (n = 7) at 1.0 microM above the resting value via an EIPA-sensitive mechanism. In conflict with the proposed role of the Na+/H+ exchange we found that U 46619 raised [Ca2+]i via a mechanism that for more than 50% depended on intact Na+/H+ exchange. Again, artificially elevating pHi restored U 46619-induced Ca2+ mobilization despite the presence of EIPA. Thus, our data show that Na+/H+ exchange is a common step in platelet activation by prostaglandin endoperoxides/thromboxane A2 and ADP and enhances Ca2+ mobilization independently of phospholipase A2 activity.
منابع مشابه
Contact-induced neutrophil activation by platelets in human cell suspensions and whole blood.
Platelet-dependent activation of polymorphonuclear neutrophils (PMNL) was investigated with a lumi-aggregometer in heparinized whole blood and platelet-PMNL suspensions. The lumi-aggregometer allowed us to simultaneously monitor increases in impedance or light transmission as consequences of platelet aggregation and luminol-enhanced chemiluminescence (CL) as a measure of the oxidative burst in ...
متن کاملEvidence for a role for Na+-H+ exchange in activation of human platelets by PAF.
We have found previously that inhibitors of Na+-H+ exchange block platelet arachidonic acid release and subsequent secondary aggregation and serotonin release in response to epinephrine, ADP, and thrombin (0.004 U/ml). The present study demonstrates that the addition of ethylisopropylamiloride, an inhibitor of Na+-H+ exchange, leads to an inhibition of platelet activating factor-induced seroton...
متن کاملCa2+ mobilization can occur independent of acceleration of Na+/H+ exchange in thrombin-stimulated human platelets.
Intracellular free Ca2+ [( Ca2+]i) and pH (pHi) were measured simultaneously by dual wavelength excitation in thrombin-stimulated human platelets double-labeled with the fluorescent probes fura2 and 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein to determine the relationship between changes in [Ca2+]i and pHi, respectively. At 37 degrees C, thrombin (0.5 or 0.1 units/ml) increased [Ca2+]i with ...
متن کاملActivation of Na + / H + exchange and Ca 2 + mobilization start simultaneously in thrombin - stimulated platelets
Although an increase in cytosolic pH (pHi) caused by Na+/H+ exchange enhances Ca2l mobilization in platelets stimulated by low concentrations of thrombin [Siffert & Akkerman (1987) Nature (London) 325, 456-458], studies using fluorescent indicators for pHi (BCECF) and [Ca2"]i (fura2) suggest that Ca2" is mobilized while the cytosolic pH decreases. Several lines of evidence indicate that the ini...
متن کاملThromboxane-induced renal vasoconstriction is mediated by the ADP-ribosyl cyclase CD38 and superoxide anion.
The present renal hemodynamic study tested the hypothesis that CD38 and superoxide anion (O2(·-)) participate in the vasoconstriction produced by activation of thromboxane prostanoid (TP) receptors in the mouse kidney. CD38 is the major mammalian ADP-ribosyl cyclase contributing to vasomotor tone through the generation of cADP-ribose, a second messenger that activates ryanodine receptors to rel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 265 2 شماره
صفحات -
تاریخ انتشار 1990